طراحی و آموزش شبکه های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت های موازی
Authors
Abstract:
Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this paper, multiple parallel populations are used for construction of ANN and evolution strategy for its training, so that in each population a particular ANN architecture is evolved. By using a bi-criteria selection method based on error and complexity of ANNs, the proposed algorithm can produce simple ANNs that have high generalization ability. To assess the performance of the algorithm, 7 benchmark classification problems have been used. It has then been compared against the existing evolutionary algorithms that train and/or construct ANNs. Experimental results show the efficiency and robustness of the proposed algorithm compared to the other methods. In this paper, the impact of parallel populations, the bi-criteria selection method, and the crossover operator on the algorithm performance has been analyzed. A key advantage of the proposed algorithm is the use of parallel computing by means of multiple populations.
similar resources
روندیابی سیل رودها با بهره وری از شبیه های شبکه ی عصبی مصنوعی تکاملی
یکی از روشهای پیشبینی سیل در رودخانهها به منظور مدیریت و کنترل سیل در آن، روندیابی سیل میباشد. امروزه تکنیک جدید استفاده از مدل شبکههای عصبی مصنوعی تکاملی(EANN) که مبتنی بر هوش مصنوعی میباشد، کاربرد گستردهای در زمینههای مختلف علمی بهویژه مهندسی آب پیدا کرده است. در این تحقیق به روندیابی سیل در رودخانه کارون، بازه اهواز- فارسیات، با استفاده از مدلهای شبکه عصبی مصنوعی تکاملی پیش رونده (...
full textاستفاده از سری های زمانی در شبکه های عصبی مصنوعی تکاملی به منظور ارزیابی آسیب پذیری در قاب بتنی خمشی
پس از وقوع یک زلزله ، تصمیم گیری سریع در مورد ایمنی ساختمان،امکان ادامه بهره برداری از یکساختمان و تعیین موقعیت و میزان خرابی مورد نظر،بسیار مهم و حیاتی می باشد. امروزه تکنیک جدیداستفاده از مدل شبکه های عصبی مصنوعی تکاملی که مبتنی بر هوش مصنوعی می باشد کاربردگسترده ای در زمینه های مختلف علمی به ویژه مهندسی سازه و زلزله پیدا کرده است. در این مقاله یک1/5 تحلیل دینامیکی غیرخطی شده g 0/1 تا g قاب خ...
full textمقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
full textطراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
full textMy Resources
Journal title
volume 13 issue 1
pages 101- 114
publication date 2016-06
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023